ALGEBRA II

Assignment 3

Due March 1, 2009

Student:

Class:

Irken Algebra 101

Almighty Tallest Purple Instructor:

Extraterrestrial Algebra for Conquerors Text:

Remember your axioms:

x + 0 = x	(Additive Identity)	
x + x = 0	(Autonegativity) - This one is just dumb.	r -
x + y = y + x	(Commutativity of Addition)	
x + (y + z) = (x + y)) + z (Associativity of Addition)	
$x * \mathbf{I} = x$	(Multiplicative Identity)	411
x * y = y * x	(Commutativity of Multiplication)	
$x \ast (y \ast z) = (x \ast y) \ast z$	z (Associativity of Multiplication)	
$x * x^{-1} = \mathbf{I}$	(Multiplicative Inverse – All x except $x = 0$ have a unique inverse x^{-1})	
x * (y + z) = x * y + x	x * z (Distribution) $T(R+H)$ $T(R+H)$	
	T×K + T×H T×W	
Duchlower	A C	R+W=H

Problems:

- 1) W + I = ?
- 2) $y = x^8 + x + \mathbf{R}$. Solve for *y*.
- 3) $\mathbf{R}^3 + \mathbf{R} + \mathbf{I} = ?$
- 4) Ax + Hy + Iz = I $\mathbf{M}x + \mathbf{R}y + \mathbf{T}z = \mathbf{T}$ $\mathbf{H}x + \mathbf{A}y + \mathbf{R}z = \mathbf{A}$ Solve for *x*, *y*, and *z*. 5) **R** * **W** = ?
- 6) $(x + W)^2 = R$. Solve for *x*. 7) W + R + A + T + H = ?
- 8) $x + \mathbf{T} = \mathbf{H}$. Solve for x.

Irken Algebra 101

Handout #7

Invader Skoodge had the temerity to ask why

$$x * \mathbf{0} = \mathbf{0}$$

isn't listed as an axiom.

It's not an axiom because it can be derived from the other axioms, like so:

$x * \mathbf{0}$

 $= x * (\mathbf{I} + \mathbf{I})$ (Autonegativity)

 $= x * \mathbf{I} + x * \mathbf{I}$ (Distribution)

= x + x (Multiplicative Identity)

= **0** (Autonegativity)

Really, Skoodge, could you *be* any shorter?

Solutions to selected problems from Assignment 2:

- 1) x + W = R. Solve for x. (x + W) + W = R + W (Adding W to both sides) x + (W + W) = R + W (Associativity of Addition) x + O = R + W (Autonegativity) x = R + W (Additive Identity) x = H.
- 2) Invader Larb has conquered **H** times as many puny civilizations as Invader Spleen has. Larbhas conquered **W** puny civilizations. How many puny civilizations has Spleen conquered?

Let x = the number of puny civilizations conquered by Larb, and

y = the number of puny civilizations conquered by Spleen.

Then we have the equations:

 $x = \mathbf{H} * y$ and $x = \mathbf{W}$. Substituting, $\mathbf{H} * y = \mathbf{W}$ $y * \mathbf{H} = \mathbf{W}$ (Commutativity of Multiplication) $(y * \mathbf{H}) * \mathbf{H}^{-1} = \mathbf{W} * \mathbf{H}^{-1}$ (Multiplying by \mathbf{H}^{-1} on both sides) $y * (\mathbf{H} * \mathbf{H}^{-1}) = \mathbf{W} * \mathbf{H}^{-1}$ (Multiplicative for Multiplication) $y * \mathbf{I} = \mathbf{W} * \mathbf{H}^{-1}$ (Multiplicative Inverse) $y = \mathbf{W} * \mathbf{H}^{-1}$ (Multiplicative Identity) $y = \mathbf{W} * \mathbf{A}$ $y = \mathbf{R}$.