ALGEBRA II

Assignment 3

Due March 1, 2009

$$
H \times A=I
$$

Student:

Class: Irken Algebra 101
Instructor: Almighty Tallest Purple
Text:
Extraterrestrial Algebra for Conquerors

$$
A+W=I
$$

Remember your axioms:
$x+\mathbf{0}=x$
(Additive Identity)
$x+x=\mathbf{0}$
(Autonegativity)
$x+y=y+x$
(Commutativity of Addition)
$x+(y+z)=(x+y)+z \quad$ (Associativity of Addition)
$x * \mathbf{I}=x$
(Multiplicative Identity)
$x * y=y * x$
(Commutativity of Multiplication)
$x *(y * z)=(x * y) * z \quad$ (Associativity of Multiplication)
$x * x^{-1}=\mathbf{I} \quad\left(\right.$ Multiplicative Inverse - All x except $x=\mathbf{0}$ have a unique inverse x^{-1})
$x *(y+z)=x * y+x * z$

Problems:
(Distribution)

$R+w=H$

1) $\mathbf{W}+\mathbf{I}=$?
2) $y=x^{8}+x+\mathbf{R}$. Solve for y.
3) $\mathbf{R}^{3}+\mathbf{R}+\mathbf{I}=$?
4) $\mathbf{A} x+\mathbf{H} y+\mathbf{I} z=\mathbf{I}$
$\mathbf{M} x+\mathbf{R} y+\mathbf{T} z=\mathbf{T}$
$\mathbf{H} x+\mathbf{A} y+\mathbf{R} z=\mathbf{A} \quad$ Solve for x, y, and z.
5) $\mathbf{R} * \mathbf{W}=$?
6) $(x+\mathbf{W})^{2}=\mathbf{R}$. Solve for x.
7) $\mathbf{W}+\mathbf{R}+\mathbf{A}+\mathbf{T}+\mathbf{H}=$?
8) $x+\mathbf{T}=\mathbf{H}$. Solve for x.

Invader Skoodge had the temerity to ask why
$x * \mathbf{0}=\mathbf{0}$
isn't listed as an axiom.
It's not an axiom because it can be derived from the other axioms, like so:
$x * \mathbf{O}$
$=x *(\mathbf{I}+\mathbf{I})$ (Autonegativity)
$=x * \mathbf{I}+x * \mathbf{I}$ (Distribution)
$=x+x$ (Multiplicative Identity)
$=\mathbf{0}$ (Autonegativity)
Really, Skoodge, could you be any shorter?

Solutions to selected problems from Assignment 2:

1) $x+\mathbf{W}=\mathbf{R}$. Solve for x.
$(x+\mathbf{W})+\mathbf{W}=\mathbf{R}+\mathbf{W}$ (Adding \mathbf{W} to both sides)
$x+(\mathbf{W}+\mathbf{W})=\mathbf{R}+\mathbf{W}$ (Associativity of Addition)
$x+\mathbf{0}=\mathbf{R}+\mathbf{W}$ (Autonegativity)
$x=\mathbf{R}+\mathbf{W}$ (Additive Identity)
$x=\mathbf{H}$.
2) Invader Larb has conquered H times as many puny civilizations as Invader Spleen has.

Larbhas conquered W puny civilizations. How many puny civilizations has Spleen conquered?
Let $x=$ the number of puny civilizations conquered by Larb, and $y=$ the number of puny civilizations conquered by Spleen.
Then we have the equations:
$x=\mathbf{H} * y$ and
$x=\mathbf{W}$. Substituting,
$\mathbf{H} * y=\mathbf{W}$
$y * \mathbf{H}=\mathbf{W}$ (Commutativity of Multiplication)
$(y * \mathbf{H}) * \mathbf{H}^{-1}=\mathbf{W} * \mathbf{H}^{-1}$ (Multiplying by \mathbf{H}^{-1} on both sides)
$y *\left(\mathbf{H} * \mathbf{H}^{-1}\right)=\mathbf{W} * \mathbf{H}^{-1}$ (Associativity of Multiplication)
$y * \mathbf{I}=\mathbf{W} * \mathbf{H}^{-1}$ (Multiplicative Inverse)
$y=\mathbf{W} * \mathbf{H}^{-1}$ (Multiplicative Identity)
$y=\mathbf{W} * \mathbf{A}$
$y=\mathbf{R}$.

